Acid-Stable Amperometric Soybean Peroxidase Biosensor Based on a Self-Gelatinizable Grafting Copolymer of Polyvinyl Alcohol and 4-Vinylpyridine

2001 ◽  
Vol 13 (7) ◽  
pp. 555-558 ◽  
Author(s):  
Bingquan Wang ◽  
Bin Li ◽  
Guangjin Cheng ◽  
Shaojun Dong
2019 ◽  
Vol 5 (4) ◽  
pp. 56-63
Author(s):  
E.V. Dikhtiaruk ◽  
◽  
V.V. Paientko ◽  
A.K. Matkovsky ◽  
Yu.N. Nichiporuk ◽  
...  

1987 ◽  
Vol 114 (1) ◽  
pp. 18-26 ◽  
Author(s):  
Chohei Shigeno ◽  
Itsuo Yamamoto ◽  
Shegiharu Dokoh ◽  
Megumu Hino ◽  
Jun Aoki ◽  
...  

Abstract. We have partially purified a tumour factor capable of stimulating both bone resorption in vitro and cAMP accumulation in osteoblastic ROS 17/2 cells from three human tumours associated with humoral hypercalcaemia of malignancy. Purification of tumour factor by sequential acid urea extraction, gel filtration and cation-exchange chromatography, reverse-phase high performance liquid chromatography followed by analytical isoelectric focussing provided a basic protein (pI > 9.3) with a molecular weight of approximately 13 000 as a major component of the final preparation which retained both the two bioactivities. Bone resorbing activity and cAMP-increasing activity in purified factor correlated with each other. cAMP-increasing activity of the factor was heat- and acid-stable, but sensitive to alkaline ambient pH. Treatment with trypsin destroyed cAMP-increasing activity of the factor. Synthetic parathyroid hormone (PTH) antagonist, human PTH-(3– 34) completely inhibited the cAMP-increasing activity of the factor. The results suggest that this protein factor, having its effects on both osteoclastic and osteoblastic functions, may be involved in development of enhanced bone resorption in some patients with humoral hypercalcaemia of malignancy.


1984 ◽  
Vol 104 (4_Supplb) ◽  
pp. S91-S92
Author(s):  
G. DAXENBICHLER ◽  
E. H. MOSER
Keyword(s):  
Rat Lung ◽  

2011 ◽  
Vol 3 (8) ◽  
pp. 91-93 ◽  
Author(s):  
Sindhu Honmute ◽  
◽  
Arunkumar Lagashetty ◽  
A. Venkataraman A. Venkataraman

2019 ◽  
Vol 41 (4) ◽  
pp. 246-252
Author(s):  
T.V. Dmytriieva ◽  
◽  
S.K. Krymovska ◽  
V.I. Bortnytskyi ◽  
S.M. Kobylinskyi ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
Charlys Bezerra ◽  
Géssica Santos ◽  
Marilia Pupo ◽  
Maria Gomes ◽  
Ronaldo Silva ◽  
...  

<p>Electrochemical oxidation processes are promising solutions for wastewater treatment due to their high efficiency, easy control and versatility. Mixed metal oxides (MMO) anodes are particularly attractive due to their low cost and specific catalytic properties. Here, we propose an innovative thermal decomposition methodology using <a>polyvinyl alcohol (PVA)</a> as a solvent to prepare Ti/RuO<sub>2</sub>–IrO<sub>2</sub> anodes. Comparative anodes were prepared by conventional method employing a polymeric precursor solvent (Pechini method). The calcination temperatures studied were 300, 400 and 500 °C. The physical characterisation of all materials was performed by X-ray diffraction and scanning electron microscopy coupled with energy dispersive spectroscopy, while electrochemical characterisation was done by cyclic voltammetry, accelerated service lifetime and electrochemical impedance spectroscopy. Both RuO<sub>2</sub> and IrO<sub>2</sub> have rutile-type structures for all anodes. Rougher and more compact surfaces are formed for the anodes prepared using PVA. Amongst temperatures studied, 300 °C using PVA as solvent is the most suitable one to produce anodes with expressive increase in voltammetric charge (250%) and accelerated service lifetime (4.3 times longer) besides reducing charge-transfer resistance (8 times lower). Moreover, the electrocatalytic activity of the anodes synthesised with PVA toward the Reactive Blue 21 dye removal in chloride medium (100 % in 30 min) is higher than that prepared by Pechini method (60 min). Additionally, the removal total organic carbon point out improved mineralisation potential of PVA anodes. Finally, this study reports a novel methodology using PVA as solvent to synthesise Ti/RuO<sub>2</sub>–IrO<sub>2</sub> anodes with improved properties that can be further extended to synthesise other MMO compositions.</p>


2013 ◽  
Vol 12 (7) ◽  
pp. 1323-1328 ◽  
Author(s):  
Lujun Chen ◽  
Weihua Sun ◽  
Jinping Tian ◽  
Jianlong Wang ◽  
Shijun He

Sign in / Sign up

Export Citation Format

Share Document